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SUMMARY: A new synthetic strategy for the regio- and stereo-specific 
synthesis of heterosubstituted tetrahydrofuran and tetrahydropyran systems 
involving intramolecular iodoetherification of 2,3-epoxy-cycloalkenols were 
studied. Unambiguous stereochemical assignments are available from X-ray 
studies. 

The realization of convergent total syntheses of the recently found cyto- 

toxic marine polyether macrolides, prorocentrolide2 or fijianolidesa (lauli- 

malides' ) requires coordinated solutions to the functionalized tetrahydro- 

furan and -pyran systems. Our present strategy for these polyether building 

blocks has emerged from a combination of studies on the conformational prefe- 

rences and stereoselective reactions of macrocycles ', and current chiral 

epoxidation methodology using adjacent hydroxyl groups.6 We have recently 

reported' that Sharpless asymmetric epoxidation of medium-size allylic Z- 

cycloalkenols provided a single epoxide with the stereochemistry indicated in 

eq 1. To address the problem of marine macrolide po1yethe.r syntheses, we 

reasoned that a related macrocycle extended with an E-double bond at C5 could 

adopt the local conformation 1 that is free of torsional strain. Theore- 

tically, exo-ring closure induced by peripheral electrophilic attack at the 

double bond, would occur by internal nucleophilic participation of the 

hydroxyl group to give cis--a,a' -dialkylated tetrahydropyrans 2, or by the 

epoxide oxygen participation to yield trans-a,aI -dialkylated tetrahydrofuran 

units 2 (es 2). Herein we report on applications of these principles that 

Eq 1 
E’ 2 
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The reaction of 1 with 12/Ti(Pri0)4 cat/C-25"C, proceeded stereoselecti- 

vely to afford, as the major product, 2,11-diiodo-1 O-hydroxy-13-oxabicyclo 

[7.3.lltridec-5-ene (2) (54% yield), which was converted quantitatively to 

the epoxide 15 (Scheme 3). The stereochemistry of u (mp 136'C) was deter- 

mined by X-raycrystallographic analysis (%')." 

The more polar components in both iodine-assisted cyclization reactions on 

1 and 8, correspond respectively with the iodohydrins 16 and 17 (30 and 33% - - 

yields, respectively), which are quantitatively converted into the starting 

epoxy-alcohol 1 upon base treatment (K,COa, aq acetone). No cyclization 

products were obtained from the iodohydrin 17 after Iz/Ti(PriO), long treat- - 

ment. The stereochemistry of 17 was determined by - X-ray crystallographic 

analysis.g All new compounds gave spectroscopic'* and analytical data entirely 

in accord with the structures shown. Extension of this strategy to higher 

ring homologues and the total synthesis of fijianolide-A.3'4 are continuing. 
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a135.1(d),3;3;iWjd), 
37*1(t), 
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